|
(本页是纯文字版,点此阅读完整版全文)
采用40nm CMOS工艺的71.5至81GHz的有源移相器 黄上耀、王彦杰、阙显沣,华南理工大学 为了提高信噪比和减少干扰,相控阵系统的波束赋形技术已被广泛应用于毫米波通信领域。1,2 在相控阵系统中,移相器是一个关键部件。其相位分辨率和移相范围决定了阵列系统的波束赋形和波束转向能力。3,4 移相器一般可分为无源5,6和有源两种。7,8 开关式9、反射式10和负载传输线移相器都属于无源移相器,他们通常需要占据较大的面积并且具有较高的插入损耗。相比之下,有源移相器的相位分辨率更高、插入损耗更低、尺寸更小。 传统的有源移相器通常包含多个电感器,这将占用很大的面积。11 此外,可变增益放大器(VGA)的性能也限制了相位分辨率。实现VGA通常有两种方法:尾电流控制的吉尔伯特单元11和电流转向12。由于VGA难以调节,无论采用哪种方法,相位分辨率都很低。在毫米波频率下,由于晶体管性能有限以及CMOS设计中的寄生效应,这种情况更为明显。 为了解决这些问题,本文介绍了一种6位有源移相器,它采用了紧凑型差分无电容正交生成器电路(QGC)和带有6位解码器的比例型数模转换器(DAC)阵列。在71.5至81GHz范围内,其均方根(RMS)相位误差为3.2至3.6度,RMS增益误差为0.85至0.90dB。这一性能是在没有数字校准的情况下实现的。 移相器设计 移相器由一个紧凑型无电容QGC、一个三级放大器和一个用于相位合成的包含一个6位解码器的I/Q DAC阵列组成。为便于测量,还增加了输入和输出巴伦。经过两级放大后,QGC产生全差分I/Q信号。QGC和放大器之间的I/Q通路采用级间匹配,以实现最大功率传输。二进制加权I/Q DAC和6位解码器协同设计用于矢量合成。放大器和DAC之间的串联峰值用于扩展带宽。移相器框图如图1所示。 QGC设计 QGC起着至关重要的作用,因为它能产生正交的I/Q信号,并直接影响移相器的性能。许多基于变压器的传统QGC采用水平耦合的平面结构,但这会浪费面积。为了解决这个问题,Li等人的设计13采用了垂直耦合的垂直堆叠结构。然而,由于在添加额外电容器时需要考虑电容器的设计和位置,这种方法增加了设计的复杂性。 在本文所述的移相器设计中,金属层之间的寄生电容被加以利用。QGC的等效电路和版图分别如图2a和图2b所示。差分输入信号被施加到输入端口(IN+、IN-),然后在直通端口(THU+、THU-)和耦合端口(CPL+、CPL-)被分成两个正交信号14。两个隔离端口(ISO+、ISO-)之间连接一个100Ω电阻器。Cp是不同物理层间的寄生电容。在40nm CMOS工艺中,上层金属的厚度更厚,电阻率更低。这有利于减少插入损耗。因此,QGC的版图设计使用了最上面的四层金属。 放大器和I/Q DAC设计 I/Q通路中的放大器和DAC原理图如图3所示。在放大器部分,电容器CN中和了栅极到漏极电容。放大器和DAC之间使用串联峰值来扩展带宽。在DAC部分,所有晶体管均由一个6位解码器控制。为实现高相位精度,DAC中的晶体管尺寸比被优化为1:2:4:8:16:32。 串联峰值技术 放大器和DAC的寄生电容会缩小移相器的带宽。至少有两种技术可以缓解这一问题:串联峰值和并联峰值。这些技术分别应用了LC串联谐振和LC并联谐振原理。串联和并联谐振的电感值如公式1所示:
移相器的模拟结果和峰值结果见图4和表1。结果显示了两种峰值方法对带宽和峰值增益的改善。基线为无谐振电感。串联峰值和并联峰值都改善了3dB带宽。没有谐振电感时,3dB带宽为7.6GHz。采用串联和并联峰值后,带宽分别为10GHz和11.4GHz。虽然串联峰值的带宽略有降低,但由于其峰值增益更高,因此本设计选择了串联峰值。 新增串联峰值电感的版图如图5所示。该电感采用旋转布置,以减小尺寸。因此,采用了基于变压器的串联峰值技术,可以提高整体带宽和增益,同时减小芯片尺寸。 测量 图6a所示的移相器芯片采用40nm CMOS工艺,核心面积为250×720µm2。图6b是测量设置框图。测量结果显示,该移相器在基本状态下的3dB带宽为71.5至81GHz,插入损耗为6至9dB。整个相移范围为360度,最小相位分辨率为5.625度。图7a是测得的相对相移,图7b是64个状态的插入损耗。从71.5GHz到81GHz,RMS相位误差小于3.6度,RMS增益误差小于0.9dB。表2总结了移相器的性能特点以及与其他工作的比较结果。表2中FoM的推导如公式2所示:
结论 一款具有三级放大功能的宽带6位有源移相器采用了具有串联峰值技术的紧凑型无电容QGC,从而能够生成正交信号并扩展带宽。该移相器芯片采用台积电40nm CMOS实现,核心面积为250×720µm。在76.5GHz频率下实现了-6dB的峰值增益,其3dB带宽为71.5至81GHz。在3dB带宽内,RMS相位误差为3.2至3.6度,RMS增益误差为0.85至0.90dB。该移相器尺寸小巧,相位误差小,非常适合应用于毫米波相控阵系统。 参考文献 1. T. Sowlati, S. Sarkar, B. Perumana, W. L. Chan, B. Afshar, M. Boers, D. Shin, T. Mercer, W. -H. Chen, A. P. Toda, A. G. Besoli, S. Yoon, S. Kyriazidou, P. Yang, V. Aggarwal, N. Vakilian, D. Rozenblit, M. Kahrizi, J. Zhang, A. Wang, P. Sen, D. Murphy, M. Mikhemar, A. Sajjadi, A. Mehrabani, B. Ibrahim, B. Pan, K. Juan, S. Xu, C. Guan, G. Geshvindman, K. Low, N. Kocaman, H. Eberhart, K. Kimura, I. Elgorriaga, V. Roussel, H. Xie, L. Shi and V. Kodavati, “A 60 GHz 144-Element Phased-Array Transceiver with 51 dBm Maximum EIRP and ± 60 Degree Beam Steering for Backhaul Application,” IEEE International Solid-State Circuits Conference, February 2018. 2. K. Kibaroglu, M. Sayginer and G. M. Rebeiz, “A Low-Cost Scalable 32- Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2×2 Beamformer Flip-Chip Unit Cell,” IEEE Journal of Solid-State Circuits, Vol. 53, No. 5, May 2018, pp. 1260–1274. 3. B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. K. Reynolds, Ö. Renström, K. Sjögren, O. Haapalahti, N. Mazor, B. Bokinge, G.Weibull, H. Bengtsson, A. Carlinger, E. Westessen, J. E. Thillberg, L. Rexberg, M. Yeck, X. Gu, M. Ferriss, D. Liu, D. Friedman and A. Valdes-Garcia, “A 28-GHz 32-Element TRX Phased-Array IC with Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications,” IEEE Journal of Solid-State Circuits, Vol. 52, No. 12, December 2017, pp. 3373–3391. 4. W. Zhu, W. Lv, B. Liao, Y. Zhu, Y. Dai, P. Li, L. Zhang and Y. Wang, “A 21 to 30-GHz Merged Digital-Controlled High Resolution Phase Shifter-Programmable Gain Amplifier with Orthogonal Phase and Gain Control for 5-G Phase Array Application,” IEEE Radio Frequency Integrated Circuits Symposium, June 2019. 5. K. T. Trinh, C. -H. Lin, H. -L. Kao, H. -C. Chiu and N. C. Karmakar, “18 - 20 GHz Compact Passive 4-Bit GaAs MMIC Phase Shifter with Low Insertion Loss,” IEEE Asia-Pacific Microwave Conference, December 2019. 6. C. Chen, Y. Wang, Y. Lin, Y. Hsiao, Y. Wu and H. Wang, “A 36 - 40 GHz Full 360 Degree Ultra-Low Phase Error Passive Phase Shifter with a Novel Phase Compensation Technique,” European Radar Conference, October 2017. 7. Z. Duan, Y. Wang, W. Lv, Y. Dai and F. Lin, “A 6-bit CMOS Active Phase Shifter for Ku-Band Phased Arrays,” IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, July 2018, pp. 615–617. 8. B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak and Y. Gurbuz, “A 6 Bit Vector-Sum Phase Shifter with a Decoder Based Control Circuit for X-Band Phased-Arrays,” IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, January 2016, pp. 64–66. 9. D. Huang, L. Zhang, D. Li, L. Zhang, Y. Wang and Z. Yu, “A 60-GHz 360 Degree 5-Bit Phase Shifter with Constant IL Compensation Followed by a Normal Amplifier with 1 dB Gain Variation and 0.6-dBm OP-1dB,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, No. 12, December 2017, pp. 1437–1441. 10. J. Xia, M. Farouk and S. Boumaiza, “Digitally-Assisted 27-33 GHz Reflection-Type Phase Shifter with Enhanced Accuracy and Low IL-Variation,” IEEE Radio Frequency Integrated Circuits Symposium, June 2019. 11. X. Quan, X. Yi, C. C. Boon, K. Yang. C. Li, B. Liu, Z. Liang and Y. Zhuang, “A 52-57 GHz 6-Bit Phase Shifter with Hybrid of Passive and Active Structures,” IEEE Microwave and Wireless Components Letters, Vol. 28, No. 3, March 2018, pp. 236–238. 12. B. Wang, H. Gao, M. K. Matters-Kammerer and P. G. M. Baltus, “A 60 GHz 360 Degree Phase Shifter with 2.7 Degree Phase Resolution and 1.4 Degree RMS Phase Error in a 40-nm CMOS Technology,” IEEE Radio Frequency Integrated Circuits Symposium, June 2018. 13. Y. Li, Z. Duan, W. Lv, D. Pan, Z. Xie, Y. Dai and L. Sun, “A 32-40 GHz 7-bit CMOS Phase Shifter with 0.38 dB/1.6 Degree RMS Magnitude/Phase Errors for Phased Array Systems,” IEEE Radio Frequency Integrated Circuits Symposium, August 2020. 14. S. Li, G. Feng, Y. Zou and Y. Wang, “A Compact 58-65 GHz 6-Bit Phase Shifter with 0.7 deg/0.35 dB RMS Phase/Gain Error in 40 nm CMOS Technology,” IEEE MTT-S International Wireless Symposium, August 2022. 15. D. Pepe and D. Zito, “Two mmWave Vector Modulator Active Phase Shifters with Novel IQ Generator in 28 nm FDSOI CMOS,” IEEE Journal of Solid-State Circuits, Vol. 52, No. 2, February 2027, pp. 344–356. 16. J. Jang, B. Kim, C. -Y. Kim and S. Hong, “79-GHz Digital Attenuator-Based Variable-Gain Vector-Sum Phase Shifter with High Linearity,” IEEE Microwave and Wireless Components Letters, Vol. 28, No. 8, August 2018, pp. 693–695. 17. G. H. Park, C. W. Byeon and C. S. Park, “A 60-GHz Low-Power Active Phase Shifter with Impedance-Invariant Vector Modulation in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, December 2020, pp. 5395–5407. 18. E. -T. Sung, S. Wang and S. Hong, “A 60-GHz Polar Vector Modulator with Lookup Table-Based Calibration,” IEEE Microwave and Wireless Components Letters, Vol. 31, No. 6, June 2021, pp. 572–574. 19. Z. Li, J. Qiao and Y. Zhuang, “An X-Band 5-Bit Active Phase Shifter Based on a Novel Vector-Sum Technique in 0.18 μm SiGe BiCMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 6, June 2021, pp. 1763–1767. 20. K. Zhao, L. Qiu, J. Chen, Q. Dong, Y. -C. Kuan, Q. J. Gu, C. Song and Z. XU, “An E-Band Subradix Active Phase Shifter with < 0.69 Degrees RMS Phase Error and 16-dB Attenuation in 28-nm CMOS,” IEEE/MTT-S International Microwave Symposium, June 2022. 21. M. Ghaedi Bardeh, J. Fu, N. Naseh, J. Paramesh and K. Entesari, “A Wideband Low RMS Phase/Gain Error mmWave Phase Shifter in 22-nm CMOS FDSOI,” IEEE Microwave and Wireless Technology Letters, Vol. 33, No. 6, June 2023, pp. 739–742. 图1:有源移相器框图 图2:(a) QGC原理图。(b) QGC版图。 图3:放大器、串联峰值和I/Q DAC的原理图。 图4:模拟移相器带宽和峰值增益。 图5:基于变压器的串联峰值电感版图。 图6:(a) 6位移相器芯片。(b) 测量设置框图。 图7:(a) 相对相移性能。(b) 插入损耗性能。 表1:带宽和增益比较 表2:性能概要和比较
版权声明: 《微波杂志》网站的一切内容及解释权皆归《微波杂志》杂志社版权所有, 未经书面同意不得转载,违者必究! 《微波杂志》杂志社。 |
|
友情链接 |
首页 | 关于我们 | 联络我们 | 加入我们 | 服务条款 | 隐私声明 Copyright© 2024: ; All Rights Reserved. 粤公网安备 44030402004704号 备案序号:粤ICP备12025165号-4 |