Improve Doherty Amplifier in efficiency and output power

Author: Gareth Lloyd, Applications Development
Presenter: Markus Loernер, Market Segment Manager – RF & microwave component test
What’s on offer?

- According to Darraji et al., the difference between two solutions
 - Analog Doherty
 - Digital Doherty
 is as much as:

 - 60% output power
 - 20% efficiency
 - 50% bandwidth
 - no degradation in DPD efficacy.

- But, how can the difference be identified on a case-by-case basis?
Background on Doherty architecture

Facts
- Invented almost 100 years ago
- Efficiency enhancement method
- Linearity-preserving
- Two (or more) amplifiers that interact through a special combining network

Applications
- Mostly for below 3 GHz until now
- Dominates on base station infrastructure

New Frontier
- Higher carrier frequencies, wider BW
- 5G in mmW, SatCom (Ku-, Ka-bands)
Background

- Various possibilities of efficiency-enhancement architectures
- Doherty amplifier is just one
Challenge 1: Combining the 2 paths

- Misalignment of signals
 - loss of power
 - loss of energy efficiency
 - destructive voltages/currents

- Input signals need to be matched for amplitude and phase
 - Time domain
 - Frequency domain
 - Amplitude domain
Challenge 2: 2 different paths

- Ideal performance by auxiliary characteristic is “dog leg”
 - Often approximated by “Class C” amplifier

- Performance driven by difference between the main and auxiliary curves

- The two extremes
 - Main, the Doherty ‘effect’ tends to 0 (or like ‘Balanced’)
 - Ideal, the Doherty ‘effect’ is maximized
Challenge 3: Find right amplifier setup for 2 paths

- Different classes of amplifier to drive the Doherty difference engine can be disadvantageous.

- The Fourier Analysis of conduction angle shows how, power and efficiency might be compromised.
 - Power is lost from the auxiliary
 - Efficiency is lost from the main

- The quiescent bias power demands of the main can prove costly, especially in TDMA operation.

![Efficiency and Output Power vs Conduction Angle](image)

Power and Efficiency impacts of conduction angle [Cripps].
Challenge 4: Signal splitter

- How to design the input splitter?

- After design and alignment of the output section, designers often use cut-and-try techniques on the input side.

- Salient features of this method:
 - Labour intensive
 - Non-exhaustive, sparse characterization
 - Global maxima unconfirmed
 - Cannot easily adjust amplitude balance
 - Poorly defined structures
 - Lossy components
 - Matching variations
Extremes of Doherty implementations:

- The default setup
 - Single gain stage inside a Split-Doherty Combine.
 - Differentially biased devices

- Digital Doherty
 - Independent paths all the way from digital domain
 - Common biased devices

In between lies a whole range of implementation solutions, with differing features and trade-offs.
Measurement aided development

Idea
- Additional measurement-based step in the traditional Doherty development process
- Remove the input split and phase shift networks
- Drive two Doherty input ports directly from a signal generator

Benefits
- Better view of performance tradeoffs
- In-depth understanding of sensitivities
- Benchmark maximum performance
- Select best input split and specify performance with confidence
- Applicable to all input split architectures

The test and measurement concept
Dual-Path Measurement (Linear)

- Same signal to both RF paths
- Sweep input power, amplitude and phase difference (optionally bias, etc.)
- Measure what is of interest like saturated power, RMS, PEP, Efficiency, ACLR or PAPRo

Result:
- Dispersion of amplitude/phase between parameter optima and frequency
- This is already far ahead of the usual characterization dataset.
Apply mean variance

- Simulation of production variation vs gain and phase
- In this case, die-die variation superimposed on wafer-wafer variation
- Then spread it over frequency range using measurement data as a LUT
Slight variation: equalized input

- Different input split, optimized for efficiency at the two design frequencies
- Apply the same randomized population of gain-phase spread across wafer and die – and the same post-processing…
Increased mean, reduced deviation

- Goal: optimized efficiency, we get on top
 - Increased mean value
 - Reduced standard deviation
 → improved specification

- Even a simple modification to the design flow and analysis can have significant improvements and consequences
Dual-Path Measurement (Non-Linear)

- Apply different, but related signals to the two RF paths and common-mode biasing. Simple case:
 - Auxiliary signal derived from square of the Main signal
 - Biased at threshold

- Driven by the increased saturated power (representing the limit of linearization)
 - 47% higher output power (43.8dBm -> 45.5dBm)
 - 11% higher efficiency (44% -> 49%)
 - 94% reduction in “stand-by” power consumption (100mA -> 6mA)

- Compare with the reported 60% output power, 20% efficiency, 50% bandwidth and no degradation in linearizability.
Results

Conventional Mode Operation

- Improve Doherty Amplifier in efficiency and output power

Dual-Input Mode Operation
Hardware

R&S®SMW200A Vector Signal Generator
- Dual-path with precise signal alignment
- Relative phase, amplitude, timing adjustment
- Power split and input-power dependent phase delta in real time
- Shaping

R&S®FSW Signal and Spectrum Analyzer
- Wide analysis bandwidth
- Dedicated amplifier test capabilities with all interesting parameters from EVM to Gain compression
- Vectors like AM-AM and AM-PM
R&S®SMW-K546 Digital Doherty Software Option

- Couple RF paths with precise phase and power alignment
- Power split and input-dependent phase delta
- Arbitrary delta-power, delta-phase
Conclusions

- Perfect Doherty operation cannot be achieved. But, performance can be strongly differentiated by the input side architecture.

- Various input side designs for the Doherty amplifier, including:
 - Fixed constant, or fixed dispersive, RF split
 - Programmable RF split
 - Dispersive RF split
 - Digital domain split
 … and so on, each correcting frequency, time or amplitude domain effects.

- The proposed measurement set-up enables a comprehensive, rapid and accurate characterization of the Doherty Prototype.

- Measuring as a Dual-Input:
 - Provides unprecedented insight.
 - Enables the best engineering decision to be made, supported by the most information, in the shortest time.
References, Acknowledgements & Further Reading.

