ADI Radio Solutions to Enable 5G MIMO and Small Cell

Brad Brannon
System Architect
Analog Devices, Greensboro NC
Abstract

For 5G, there are many new systems, like MIMO and small cells, needed to support new businesses. They have more antenna channels than before (MIMO), or much higher power/size constraints (small cell), at the same time operating with a wider spectrum. This workshop explains ADI’s latest radio technology, which brings multi-channel converters, LOs, RF front ends and digital front ends together to greatly improve the integration level while maintain performance. In addition, ADI developed power over Ethernet, attached power, clock, and RF solutions around its Integrated radio product to make it easier to build a 5G solution.
5G is about Coverage & Capacity
Small Cell

Benefits
• Enables consistent coverage in difficult to reach locations
• Improve capacity in densely populated areas like offices, arenas and residential areas.

Challenges
• Large number of deployment sites drives
 – Cost point
 – Power dissipation requirements
 – Size
 – Weight restrictions
Massive MIMO

Benefits

• Increased capacity through spatial diversity in both azimuth and elevation
• Improves coverage by focusing RF energy directly to the user
• Spectral management supports improved efficiency and user allocations.

Challenges

• Large number of radio units per site require
 – Low cost radios
 – Small size to facilitate system integration
 – Low weight required to ease of installation
 – Low power required for thermal management
Comprehensive Solution

Co-operative solutions encompassing all aspects of the signal chain
Radio Solutions

- Flexible
- Efficient
- Wideband
- Low Power
- Scalable
- Configurable
- Integrated
- Cost efficient
- High Density
The Right Architecture Choices
The Right Architecture Choices

• Overwhelming choice of solutions for wireless designs

• Architecture must be carefully selected to achieve the desired goals. Each architecture comes with tradeoffs to be made.
 – RIF
 • Not flexible and requires a lot of filtering
 – Direct RF Sampling
 • Widest bandwidth but highest power
 – Zero IF
 • Most efficient with good performance, scalability & flexibility

• Small Cell & Massive MIMO requires an efficient solution. ZIF achieves:
 – 50% less system cost
 – 50% less system power
 – 67% smaller overall footprint
Complete RF, Clock and Power Management

- RF Amplifiers complement the transceiver
- Transceiver enable the standard
- Power enables an efficient solution
- Clocking keeps the system synchronized and meeting performance.

RF signal chains work best when the components are designed to work together
The Right Architecture

- Configurable Radio technology platform
- Reduce the complexity of the RF design
- Architect the radio to reduce or eliminate bulky external components
- Leverage digital algorithms to improve performance of overall RF chain

Minimize Cost, Size, Weight and Power

Where Zero-IF Wins: 50% Smaller PCB Footprint at 1/3 the Cost

By Brad Brannen
Wideband RF Transceiver Benefits

Highly Reconfigurable
Enables reduced time to market through common HW & SW Small Signal Radio Platform

- ADI Integrated Trx 100MHz – 6GHz Programmable BW
- Integrated uC
- DFE/DBB

Unique Design/Product
Common HW + SW Across Products

Lowest Power Consumption
Reduce thermal density, enable lower SWAP radios

- Lowest possible power dissipation
 - Highest power consumption blocks operate at minimum bandwidth

Highest Level of Integration
Enables higher density radio architectures e.g. M-MIMO

- 3.5" (90mm)
- 5.4" (135mm)

Lowest System Cost

- Components such as IF filters are eliminated
- RF filters are simplified enabled by the elimination of out-of-band images or aliases
RadioVerse™ Portfolio

<table>
<thead>
<tr>
<th>Part #</th>
<th>Applications</th>
<th>Bandwidth</th>
<th>Functionality</th>
<th>RF Tuning Range</th>
<th>Rx Image Rejection*</th>
<th>Rx NF/IIP3**</th>
<th>Tx OIP3*</th>
<th>EVM</th>
<th>Package Size</th>
<th>Data Interface</th>
<th>DPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD9361</td>
<td>3G/4G Picocell, SDR, Pt-Pt, Satcom, IoT Aggregator</td>
<td>56 MHz</td>
<td>2 Rx, 2 Tx</td>
<td>70 MHz to 6 GHz</td>
<td>50B</td>
<td>3dB/-14dBm</td>
<td>+19dBm</td>
<td>-40 dB</td>
<td>10 mm x 10 mm</td>
<td>CMOS/LVDS</td>
<td>N/A</td>
</tr>
<tr>
<td>AD9364</td>
<td>3G/4G Picocell, SDR</td>
<td>56 MHz</td>
<td>1 Rx, 1 Tx</td>
<td>70 MHz to 6 GHz</td>
<td>50dB</td>
<td>3dB/-14dBm</td>
<td>+19dBm</td>
<td>-40 dB</td>
<td>10 mm x 10 mm</td>
<td>CMOS/LVDS</td>
<td>N/A</td>
</tr>
<tr>
<td>AD9363</td>
<td>3G/4G Femtocell, UAV, Wireless Surveillance</td>
<td>20 MHz</td>
<td>2 Rx, 2 Tx</td>
<td>325 MHz to 3.8 GHz</td>
<td>50dB</td>
<td>3dB/-14dBm</td>
<td>+19dBm</td>
<td>-34 dB</td>
<td>10 mm x 10 mm</td>
<td>CMOS/LVDS</td>
<td>N/A</td>
</tr>
<tr>
<td>AD9371</td>
<td>3G/4G Macro BTS, Massive MIMO, SDR</td>
<td>100MHz Rx, 250MHz Tx/Orx</td>
<td>2Tx, 2Rx Orx & 5nRx</td>
<td>300 MHz to 6GHz</td>
<td>75dB</td>
<td>13.5dB/+22dBm</td>
<td>+27dBm</td>
<td>-40 dB</td>
<td>12 mm x 12 mm</td>
<td>6GHz JESD204B</td>
<td>N/A</td>
</tr>
<tr>
<td>AD9375</td>
<td>3G/4G Small Cell, 3G/4G Massive MIMO</td>
<td>100MHz Rx, 250MHz Tx/Orx</td>
<td>2Tx, 2Rx Orx & 5nRx</td>
<td>300 MHz to 6GHz</td>
<td>75dB</td>
<td>13.5dB/+22dBm</td>
<td>+27dBm</td>
<td>-40 dB</td>
<td>12 mm x 12 mm</td>
<td>6GHz JESD204B</td>
<td>Linearization BW up to 40MHz</td>
</tr>
<tr>
<td>ADRV9009</td>
<td>Macro BTS, Massive MIMO, Active Antenna, Phased Array Radar, Portable Test Equipment</td>
<td>200MHz Rx, 450MHz Tx/Orx</td>
<td>2Tx, 2Rx</td>
<td>10GHz to 6GHz</td>
<td>75dB</td>
<td>12dB/+15dBm</td>
<td>+27dBm</td>
<td>-43 dB</td>
<td>12mm x 12 mm</td>
<td>12GHz JESD204B</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* typical performance @ 2.6GHz.
** typical performance @ 2.6GHz, AD9361 assumes internal LNA; AD937x and ADRV9009 no internal LNA.
ADRF9009 1-Chip 5G TDD Transceiver

- Integrated Dual Traffic Rx and Tx
 - Tuning Range: 75MHz < Fc < 6GHz
 - TDD Operation only
- Receivers
 - Max Rx BW = 200MHz
- Transmitters
 - Max Tx BW = 450MHz
- Integrated Observation Rx
 - Max ORx BW = 450MHz
 - Shared inputs with Rx
- Total Power (@ max bandwidth)
 - Dual Rx = 3.5W
 - Dual Tx = 3.7W
 - Tx+ORx = 5.6W
- Analog/Digital/Software Features
 - 16bit ADC/DAC
 - Frequency Agility
 - LO phase synchronization
 - Rx: DC offset, QEC, AGC
 - Tx: QEC, LO leakage
 - Programmable FIRs
 - 12GSPS JESD204-B interface
 - Embedded ARM

Applications
- COMS: MC-GSM, 3G/4G/5G Macro BTS, Massive MIMO
- ADEF: Radar, EW, MilCom, SigInt
- ETM: SDR, Portable Test Equipment

Package
- 12x12 BGA

Interface
- 12G JESD204B
RadioVerse™ Tools

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cellular Comms</th>
<th>Aerospace & Defense</th>
<th>Wireless Video Transmission</th>
<th>SDR</th>
<th>IoT End Node, IoT Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD9361</td>
<td>AD9361</td>
<td>AD9361</td>
<td>AD9361</td>
<td>AD9361</td>
<td>ADF7030, AD9361</td>
</tr>
<tr>
<td>AD9371</td>
<td>AD9364</td>
<td>AD9363</td>
<td>AD9364</td>
<td>AD9364</td>
<td></td>
</tr>
<tr>
<td>AD9375</td>
<td>AD9371</td>
<td>AD9371</td>
<td>AD9371</td>
<td>AD9371</td>
<td></td>
</tr>
<tr>
<td>ADRV9008/9</td>
<td>ADRV9008/9</td>
<td></td>
<td></td>
<td>ADRV9009</td>
<td></td>
</tr>
</tbody>
</table>

Ecosystem & Tools: Xilinx and Intel FPGA Carrier Platforms, Mathworks Matlab® Simulink® Models, Eval Boards, Filter Wizard, Software Tools, PA tools, Prototyping Platforms, IoT Design Kits

Partners
- Benetel, NXP, Skyworks, HJX, Nanosemi
- Epiq, Ettus, Vadatech, Panateq
- SIHID, Simpulse, Taisync, Longwo
- Epip, Ettus, Vanteon, HJX, Simpulse, Arrow, Panateq, Rincon
- Simpulse, Vanteon

ADI Reference Designs
- ADRV-DPD1 Small Cell Radio Reference Design
- ADRV9361, ADRV9364, ADRV9009 SOM

3rd Party COTS
- Epiq Sidekiq/Maveriq, VadaTech AMC597/VPX597/FMC214
- 4 wireless video/data link solutions based on AD936x
- NI USRP series, ARRadio, Epiq Sidekiq M2/X2/X4
- Vanteon vPrism, vChameleon
The Right ‘Time’

- Multi-source time reference
- Clock recovery, cleanup & holdover
- Local reference
- Low jitter synthesis
- System clock distribution
The Right ‘Time’

Fiber, Ethernet or Cable

ASIC or FPGA

RF, Transceiver & Converters

Recovery & Holdover
Network Synchronization
Local Reference Clock

Jitter Cleanup
Converter Clock Synthesis
LO Synthesis

GPS

ANALOG DEVICES
AD9528
JESD204B CLOCK GENERATOR
Clock Solutions

- Network clock recovery
- Low jitter synthesis
- Hitless switchover
- Temperature compensation on phase offset
- Hold over capability
- Low power consumption
- Capable buffering & distribution
- Connectivity between networking, baseband and RF Front Ends
Clock Portfolio

Network Synchronizers
- **AD9545**
 - Dual Channel, Network Synchronizer IC
- **AD9544**
 - Dual Channel, GPS and 1588 Synchronizer IC
- **AD9543**
 - Dual Channel, w/ Aux NCO & TDC Synchronizer IC
- **AD9542**
 - Dual Channel DPLL Clock IC

Ultra-Low Jitter Synthesis
- **AD9547**
 - 2.95 GHz Low jitter synthesis, divider & driver
- **AD9510.1.2**
 - 1.2 GHz Low jitter synthesis, divider & driver
- **HMC7044**
 - 3.2 GHz Low jitter synthesis, divider & driver
- **LTC6952**
 - 4.5 GHz Low jitter synthesis, divider & driver
- **AD9525**
 - 3.6 GHz Low jitter synthesis, divider & driver

Low-Jitter Clock Buffers & Dividers
- **AD9547**
 - Cleanup, Hold-over, Switch-over & Sync
- **AD9548**
 - 1PPS, Cleanup, Hold-over, 1588, Switch-over & Sync, 0 delay
- **AD9549**
 - Cleanup, Hold-over, Switch-over & Sync
- **AD9546**
 - 1PPS, Cleanup, Hold-over, 1588, Switch-over & Sync, 0 delay
- **AD9545**
 - Dual Channel, Network Synchronizer IC

ADCLK9xx
- **LTC6955**
 - Clock Buffer, Divider & Fanout
- **ADCLK9xx**
 - Clock buffers & Fanouts
- **HMC987**
 - Clock buffer & Fanout
- **AD9513.4.5**
 - Clock Divider, Delay & Distribution
Value Proposition

- GPS, IEEE1588v2, and Sync-E jitter cleaning and network synchronization
- Fast Locking in 1PPS (1Hz) Ref Input mode
- System Clock Stability Compensation
- DPLL’s able to lock with Aux NCOs as inputs
- Jitter 210fs (12k – 20MHz)
- DPLL paired with Servo software to form 1588 solution

Positioning

- Network Synchronizer Supporting:
 - IEEE 1588 support
 - SyncE
 - GPS 1PPS processing
- Aux NCOs/TDCs enable flexible configurations to adapt to various system architectures.
- WLS Apps – Baseband clocking, future RRH connected to packet switched Front Haul, e.g. eCPRI.
- WRD – Timing Cards in OTN, Switches

Package

- 7x7mm
- 48 pin LF CSP

Status

- Released
The Right Power

Excess Power = Money Wasted

A poorly designed power tree cost money to operate

\[\sim \$1 / \text{Watt} / \text{Year} \]

\[\therefore \text{An efficient power tree is key to minimizing operating cost} \]
Reference Design Study

- Great Performance
- 48% Power Efficiency
- Thermals Could Be Better
- Board Area Could Be Smaller
An Optimal Power Solution

Baseline Power Supply

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (A)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>11.729</td>
<td>0.676</td>
</tr>
<tr>
<td>AVDD_1.3V</td>
<td>1.268</td>
<td>1.222</td>
</tr>
<tr>
<td>DRVDD_1.3V</td>
<td>1.301</td>
<td>0.521</td>
</tr>
<tr>
<td>DVDD_1.3V</td>
<td>1.305</td>
<td>0.406</td>
</tr>
<tr>
<td>AVDD_2.5V</td>
<td>2.589</td>
<td>0.408</td>
</tr>
<tr>
<td>DRVDD_2.5V</td>
<td>2.590</td>
<td>0.0047</td>
</tr>
<tr>
<td>DVDD_2.5V</td>
<td>2.590</td>
<td>0.0001</td>
</tr>
<tr>
<td>DVDDIO_3.3V</td>
<td>3.301</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

POUT TOTAL: 3.827
Efficiency (%): 48.26

LT8065 Version 2

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (A)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>11.885</td>
<td>0.442</td>
</tr>
<tr>
<td>AVDD_1.3V</td>
<td>1.303</td>
<td>1.308</td>
</tr>
<tr>
<td>DRVDD_1.3V</td>
<td>1.302</td>
<td>0.531</td>
</tr>
<tr>
<td>DVDD_1.3V</td>
<td>1.305</td>
<td>0.459</td>
</tr>
<tr>
<td>AVDD_2.5V</td>
<td>2.486</td>
<td>0.440</td>
</tr>
<tr>
<td>DRVDD_2.5V</td>
<td>2.494</td>
<td>0.005</td>
</tr>
<tr>
<td>DVDD_2.5V</td>
<td>2.496</td>
<td>0.0001</td>
</tr>
<tr>
<td>DVDDIO_3.3V</td>
<td>3.301</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

POUT TOTAL: 4.102
Efficiency (%): 78.05
An Optimal Power Solution

AD9625-2.6 GHz Dynamic Performance

<table>
<thead>
<tr>
<th>Input Frequency (MHz)</th>
<th>SNRFS (dB)</th>
<th>SFDR (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>729</td>
<td>57.01</td>
<td>57.01</td>
</tr>
<tr>
<td>1346</td>
<td>56.53</td>
<td>56.54</td>
</tr>
</tbody>
</table>
The Right Power

Big savings in a small part of the design scales across the design
Smart power design in the full system reduces temperature & save money
Without Sacrificing Performance!!!
Power shouldn’t be an afterthought

- Power solutions available in all levels of packaging from bumped die through application specific modules.
- Power technology is evolving as fast as signal chains
- Power solutions should be a key part of efficiency and thermal management
The Right (Smart) Partition

- Algorithm placement has a big impact on total resource required
 - Algorithms in the FPGA/ASIC
 - Too many algorithms in the FPGA/ASIC increases the interface requirements
 - Too many algorithms in the FPGA reduces overall efficiency and increases cost & power
 - Algorithms in the radio
 - Placing the right algorithms in the radio can significantly reduce the interfacing requirements (8 lanes to 4 lanes saving 600 mW on 2T2R)
 - Algorithms in the radio improve efficiency & performance (1/10th the power or 900 mW savings on 2T, tighter loops)
 - Algorithms in the radio free up space in the FPGA for other functions or smaller FPGAs; lower cost!
Algorithm Partitioning

• Higher modulation order and new PA materials require more sophisticated algorithms
 – Modulation orders continue to increase towards 256QAM driving demand on EVM
 – New amplifiers like GaN introduce new errors like charge trapping which can impact
 inband EVM but not ACLR requiring more complicated DPD models.

• Algorithms must balance the tradeoffs between performance and implementation cost
 – A practical DPD must effectively operate under dynamically varying signal conditions.
 – Accounting for the range of conditions is a tradeoff in chip area vs. computation power
 and memory size vs. the number of pre-calculated models.

• Algorithms must balance complexity without negatively impacting system cost, power or
 performance
 – Increasing bandwidth and demands for improving efficiency are driving complexity.
 – Algorithms must carefully balancing the tradeoff between linearity and efficiency.

• Algorithms must provide stability, robustness and broad ranging protection
 – Effective algorithms must be adaptive and protect against multiple pathologies that could
 impact performance and reliability including PA failure.
 – Algorithms must be robust enough for a wide range of operating conditions and yet
 remain stable.

• The best way to accomplish this is to integrated radio centric algorithms directly into
 the radio
 – Direct RF ASIC implementation offers the smallest die area, lowest power & lowest cost
 – Algorithms associated with radio operation and performance are best implemented
 within the radio to reduce latency and minimize the number of control loops in the
 system.
AD9375 Small Cell Reference Design
(With DPD)

- Single 12V supply. Total dissipation <10W. Full power management included.
- Contains all components: transceivers, PAs, LNAs, filters, power solution
- Small Form Factor: 83mm x 88mm
- Broadband design. BOM covers band 7; other bands achievable by BOM change.
- High efficiency PA SKY66279 (29% PAE)
- 2x2 20 MHz LTE, ¼ Watt
- ACLR <-54 dBc typical @ 24 dBm Pout

- Please visit analog.com/radioverse for more information and full reference design support (HW, SW, configuration)
Conclusion

• Roll out of 5G (FR1 & FR2) will require significant amounts of new hardware throughout the network.
• This new hardware must be properly partitioned and requires careful consideration of integration.
• Partitioning and architectures chosen will greatly impact power consumption. A proper architecture will facilitate the lowest system power.
• Minimizing cost is about looking at the overall solution to find the right partition and architecture to minimize solution cost.
• RF Performance is optimized by selection of components and algorithms that are designed to work together.